Antibacterial Activity of Nanocomposites of Copper and Cellulose

نویسندگان

  • Ricardo J. B. Pinto
  • Sara Daina
  • Patrizia Sadocco
  • Carlos Pascoal Neto
  • Tito Trindade
چکیده

The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibacterial Activity and Conductivity Properties of Nanocomposites based on Cellulose Acetate Nanofibers and Copper Nanoparticles

in this work, nanocomposites comprising copper nanoparticle in cellulose acetate (CA)matrices have been prepared. In this manner, Copper nanoparticles prepared by its saltreduced by sodium borohydride at various concentration. Then this nanoparticle solution wasmixed with polymer solution and electrospun by electrospinning device. The abovenanocomposite has been successfully detected by SEM, ED...

متن کامل

The Preparation, structural characterization, optical properties, and antibacterial activity of the CuO/Cu2O nanocomposites prepared by the facile thermal decomposition of a new copper precursor

Objective(s): In this study, a new copper precursor was prepared from the combination of Cu(CH3COO)2∙H2O (1 g in 5 ml of methanol) and benzoic acid (1 g in 5 ml of methanol) at room temperature. Following that, the copper precursor was calcined at the temperature of 500ºC and 600ºC for 1.5 hours to form CuO/Cu2O nanocomposites with the code numbers of CuO-1 and CuO-2, respectively. Materi...

متن کامل

Antibacterial activity of CuO - cellulose nano rods depends on anew green synthesis (cotton)

In this study CuO nano sheets were prepared using the cellulose extracted from green synthesis (cotton) as a novel me project. Structural properties were examined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Ultra Violet (UV-Vis). The optimum copper oxide peak was at 2 theta 〖35.44〗^°corresponding to (1 ̅11) while for the cellulose was 〖22.8〗^°correspon...

متن کامل

Hybrid Nanocomposites of Montmorillonite/Copper Oxide, Synthesis and Evaluation as Effective Growth Inhibitors in Different Biological Systems

The external and interlamellar spaces of montmorilonite (MMT) were used as solid support for synthesis of CuO nanoparticles (NPs) at room temperature by the chemical reduction method. In this project, Copper Nitrate plus water (Cu(NO3)2. xH2O) and Sodium Hydroxide (NaOH) were used as Copper precursor and reducing agent respectively. Then, MMT/Cu2+ nanocomposites were stabilized with different r...

متن کامل

Hybrid Nanocomposites of Montmorillonite/Copper Oxide, Synthesis and Evaluation as Effective Growth Inhibitors in Different Biological Systems

The external and interlamellar spaces of montmorilonite (MMT) were used as solid support for synthesis of CuO nanoparticles (NPs) at room temperature by the chemical reduction method. In this project, Copper Nitrate plus water (Cu(NO3)2. xH2O) and Sodium Hydroxide (NaOH) were used as Copper precursor and reducing agent respectively. Then, MMT/Cu2+ nanocomposites were stabilized with different r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013